Key Learning Point

Emphasis on Process Side
- Design and Operation

Neglect on Utility Side
- Design and Operation

Consequence – Reduced Reliability
SRU Utilities

- Steam (imported and exported);
- Boiler Feed Water, Utility and Make-up Water;
- Fuel Gas and Natural Gas;
- Nitrogen;
- Instrument Air;
- Electricity.
Steam - Imported

- Excessive Moisture – heat loss/trap overload
- Corrosion due to non-condensibles
- Mechanical design
 - Strength weld
 - Seal weld
- Process Design
 - Fouling factor
 - Steam traps
 - Insulation
 - Purge design
- High temperature – sulfur viscosity
Steam Trap Installation Detail

Keep SRU Hot!
Steam/Condensate Connections for Steam Jacket

Condensate

To Valve

Tubing

Steam Jacket on Valve
Sulfur Pump Supply Pressure Control
Pure Sulfur Viscosity Curve
Seal Weld Procedure

TYPE 1
"J"-GROOVE

GAS SIDE WATER SIDE
Strength Weld Procedure

TYPE 3
INNER-BORE

GAS SIDE

WATER SIDE
550 psig Steam Reheater Failure
550 psig Steam Reheater Leak
Boiler Design Changes

- Higher Steam Side Operating Pressures
 - Older Designs:
 - Pressure Range: 150 to 250 psig (10 to 17 barg)
 - Steam Temperature: 354 to 399 °F (179 to 204 °C)
 - Modern Designs:
 - Pressure Range: 450 to 600 psig (31 to 41 barg)
 - Steam Temperature: 457 to 484 °F (236 to 251 °C)
- Carbon Steel Sulfidation Temperature: 650 °F (343 °C)

Smaller Margin For Error
WHB Operating Regime

Smaller Margin For Error
Typical Waste Heat Boiler Design
Typical Waste Heat Boiler Design

Older Designs
- Common to have two or three intermittent blowdown connections.
- Common to include intermittent blowdown at both hot and cold end.
- Kettle Style: water sample from exchanger: representative

Modern Designs
- Common to have only one intermittent blowdown.
- Typically located at cold end; WRONG END
- Thermosyphon: water sample from Steam Drum: risky

More Prone to Failure
Recommended Boiler Water Limits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 300</td>
<td>700 – 3500</td>
<td>140 – 700</td>
<td>15</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>301 - 450</td>
<td>600 – 3000</td>
<td>120 – 600</td>
<td>10</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>451 – 600</td>
<td>500 – 2500</td>
<td>100 – 500</td>
<td>8</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>601 – 750</td>
<td>400 – 2000</td>
<td>80 – 400</td>
<td>6</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>751 – 900</td>
<td>300 – 1500</td>
<td>60 – 300</td>
<td>4</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>901 – 1000</td>
<td>250 – 1250</td>
<td>50 – 250</td>
<td>2</td>
<td>0.2 – 1.0</td>
</tr>
</tbody>
</table>
Boiler Blowdown

- Remove water containing suspended and dissolved solids; replaced with relatively pure feedwater.

- Scale forming salts concentrate and crystallize on the heating surfaces.

- Result can be tube failures, tube-to-tubesheet failures.

- Two principal types of blowdown:
 - intermittent and continuous.

- Intermittent is done manually AND is necessary for operation of boiler regardless of whether or not continuous blowdown is employed.

- Continuous blowdown is a continuous and automatic removal of concentrated boiler water.
Boiler Blowdown

- Outside activity reduced; many factors.
- Intermittent blowdown not always a routine procedure.
- Intermittent blowdown NOT a routine procedure.
- Located at WHB outlet.
- Failure of IBD line in winter operation.
Failure to recognize importance of BFW quality and blow down procedures.

Result

Two WHB failures in 10 months.
WHB Tubesheet High Temperature Sulfide Attack
Critical Burner Nozzle Purges

- Flame scanners
- Sight glasses on the burner and reaction furnace
- Igniter port
- Reaction furnace temperature measurement
- Idle ports such as natural gas
Purge Rotameter Assembly
Nitrogen Purge Header Detail

Each Purge MUST have its own rotameter

Nitrogen to Burner and Furnace Ports

Set @ 25 psig

Nasato Consulting Ltd
Partially Plugged Furnace Port
Fuel Gas/Natural Gas

- There is a DIFFERENCE
- Composition
 - Air required
 - Contaminants
- Burner Design/Operation
 - Flame moderation
 - Options – excess air, steam, nitrogen
- Effects on SRU
 - Sulfur fires
 - Soot
- Refractory Design
Natural Gas Firing Temperatures w/ Steam Moderation
Low Pressure Steam Requirement for Flame Moderation when Firing Natural Gas at 95% Stoichiometry
THERMAL SHOCK DUE TO HIGH TEMPERATURE RESTART WHEN FURNACE WAS OFF LINE FOR SEVERAL HOURS
Liquid Storage
SRU Utilities

Key to successful SRU operation:

Pay special attention to the design and operation of the utility components
Conclusions

- Operations:
 - Training include Utilities
 - “Walk through the Metal Forest”

- Design:
 - “Devil in the Details”

- DO NOT IGNORE UTILITIES